

警告! 🔨

- 安装或使用前仔细阅读手册
- 为避免损坏或安全隐患,该设备需由有资质的人员遵守现行标准进行安装
- 任何维护操作前,断开所有电压电路和电源输入,并短接 CT 输入端
- 制造商不负责因设备使用不当导致的电气安全问题
- 产品说明如有变动和变化, 恕不另行通知。我们竭力确保技术数据和描述是准确的, 但 对错误、遗漏或由此引起的意外事件概不负责。
- 建筑电气安装时必须装设断路器,必须装设在靠近设备且易于操作人员操作之处。根据 IEC /EN 61010-1 § 6.11.2.1,该断路器必须标注为设备的断开装置
- 用软干布清洁仪表,不要使用研磨剂,液体清洁剂或溶剂。

手册修订记录

版本号	日期	备注
1.0	2014-7-22	对应英文版本 02

目录

手册修订记录	1
介绍	3
描述	3
前面板键盘	3
前面板 LED	4
初次开机	4
操作模式	4
主菜单	5
密码访问	5
显示页面导航	6
显示页面列表	6
谐波分析页面	
波形页面	8
可扩展性	8
附加资源	9
通讯通道	
输入、输出、内部变量、计数器和模拟量输入	10
限值	11
远程变量(REMx)	
用户报 警(UAx)	12
主-从机配置	
IR 编程接口	14
通过 PC 进行参数设置	15
从前面板设置参数	15
参数表	
输出功能表	
输入功能表	
报警	
报警说明	
报警属性	
报警属性表	
命令菜单	
限值和模拟量输出的测量表	
接线图	37
端子布局	43
安装	43
机械尺寸和控制屏开孔尺寸[mm]	44
技术特性	45

介绍

PFC8 自动功率因数控制器提供功率因数校正应用的先进功能。外观小巧紧凑、前面板设计新颖,易于安装,背部有扩展接口(通过插入 EXP 扩展模块实现)。LCD 屏幕清晰直观。

描述

- 自动功率因数控制器内置8个继电器(电容器步),可扩展到16个(步)
- 128x80 像素,背光,4级灰度 LCD 屏
- 5个功能和设置导航键
- 红色 LED 指示灯显示报警和异常状态
- 10种语言文本显示测量值、设置和信息
- 扩展总线带 4 个插槽,可用于 EXP 系列扩展模块
 - RS232, RS485, USB, 以太网, Profibus, GSM/GPRS 通讯接口
 - 附加数字量输入输出,静态或继电器输出
 - 附加模拟量输入输出,用于温度 PT100,电流,电压测量
- 主-从模式下可连接单元数
 - 最大配置: 主机+8 从机
 - 最多总计 32 步
 - 每个单元最多 16 步
 - 步数可以并列
- 高级可编程输入输出功能
- 完全用户自定义报警
- 高精度真均方根测量值
- 三相加中性线市电电压测量输入
- 三相测量电流输入
- 前面板光电隔离编程接口: 电气隔离、高速率、防水, 兼容 USB 和 WiFi
- 带储能实时日历时钟
- 最后 250 条事件存储

前面板键盘

键√-调取主菜单并确认一个选择 键▲和▼-滚动显示页面或选择一个菜单选项列表 键◀-退出一项设置/选择或退出菜单 键▶-滚动显示子页面或进入一项设置

前面板 LED

红色报警 LED——闪烁指示有活动报警。

初次开机

- 初次开机时,如果控制器不工作,可能要求用户设置时钟日历。
- 然后出现一个窗口要求设置语言进行显示浏览。按 OK 直接进行参数 P01.01 语言选择 设置。

- 随后显示一个窗口要求设置 CT 一次侧数值,这通常由终端用户完成。即使如此,也可

SET CT PRIMARY

以直接进行相关参数 P02.01 的设置

- 每次开机重复上述流程直到 CT 一次侧数值在参数 P02.01 中设置完成。

操作模式

正确选定的模式在主页面中央以反色显示。共有三种模式,如下:

测试模式

- 如果控制器是崭新的,从来没有编程过,它将自动进入测试模式,允许用户手动激活每
 一个继电器输出,来检查接线正确与否;
- 输出的激活与禁止由手动模式完成,无需考虑重连接时间;
- 一旦进入编程并且设置了参数,控制器自动退出测试模式;
- 编程后如需进入测试模式,在命令菜单中使用恰当的命令即可。

手动模式

- 控制器进入手动模式,可以选择其中一步进行手动连接或断开;
- 在主页面按▶,第一步被高亮显示在一个方块中,按◀或▶选择所需要的步;
- 按▲连接或按▼断开选定的步;
- 如果步上的数字显示浅灰色,表示该步不可用因为重连接时间还没有到。这时,发送一 条闭合命令,步的数字将闪烁指示操作已经确认并且将尽快执行;
- 即使失电,步的手动配置也会被保持住。当电源恢复后,步恢复原始状态。

自动模式

- 在自动模式下,控制器计算最优电容投切步数以达到设置的功率因数;
- 选择原则考虑很多变量,如:每步的额定功率,操作次数,使用总时间,重连接时间等;
- 控制器通过闪烁步上方的对应数字来显示即将连接或断开的步。如果因为重连接时间 (电容放电时间)无法投入步,闪烁可以延长。

 如果步上的数字显示浅灰色,表示该步不可用因为重连接时间还没有到。设备将等待重 连接时间结束。

主菜单

- 主菜单由一组图形化图标(快捷键)构成,允许快速进行测量值的查看和参数设置。
- 从常规测量值开始查看,按√主菜单将显示。
- 按▲或▼顺时针或反时针选择所需功能,选定图标高亮显示并且屏幕中央显示功能描述。
- 按√激活选定功能。
- 如果一些功能不可用,相应图标将被禁止,显示为浅灰色。
- 🖤 🕏 更改操作模式为手动或自动模式。
- 三打开密码进入页面,可以指定数字密码解锁受保护功能(参数设置、命令菜单)。
- 🖻 直接进入设置菜单进行参数编程,见相应章节。
- 😰 直接进入命令菜单,授权用户可执行某些清空-恢复动作。

密码访问

- 密码用于激活或锁定对设置菜单和命令菜单的访问。
- 对全新设备(出厂默认),密码管理被禁止,可自由访问。相反,密码激活并设置后, 如果访问,则需要先输入密码,通过键盘输入数字密码。
- 激活密码管理和定义数字密码,请见设置菜单 M15 密码。
 - 用户访问权限 允许清空存储数值和编辑授权设置参数;
 - 高级访问权限 全部用户权限加全部设置编辑-恢复权限。
- 从常规测量值浏览,按√进入主菜单,然后选取密码图标并且按√。
- 阐述如下:

- 键▲和▼: 更改数字;
- 键◀和▶:数字间移动;
- 输入所有数字密码,然后移动到右侧图标上;
- 如果输入的密码与用户访问密码或高级访问密码匹配,则相应信息解锁显示;

- 一旦密码解锁,访问权限将持续到:
 - ♦ 设备断电;
 - ◆ 设备复位(退出设置菜单之后);
 - ♦ 两分钟无任何键盘操作;
- ▶ 退出密码屏幕,按键√即可。

显示页面导航

- 键▲和▼,按页滚动显示测量值页面,标题条显示当前页名称。
- 根据控制器编程和连接,一些测量值可以不被显示;
- 子页面(可以通过键√进入)在一些页面上可用,如以棒状图显示电压和电流;
- 用户可以指定在一定时间内如果没有键盘操作显示应该返回到哪一页和哪一子页面;
- 系统亦可编程页面显示上次停留页面;
- 这些功能设置在菜单 M01-实用功能

显示页面列表

页面	示例
电压和电流	1 - 额定电压棒状图 2 - 额定电流棒状图 Set10.951 HHN 26227 (2) 9.000 2
功率	1 - 棒状图 TPF=1.00
温度	1 - 报警阀值 2 - 带时间标签最高温度峰值 1 1
步时间统计	1 - 设置功率 2 - 测量功率 1 - 改置功率 1 - 改置数率 1 - 改置数率 1 - 改置数率 1 - 改置数率 1 - 改置数率 1 - 改量数率 1 - 改量数量数率 1 - 改量数量数 1 - 改量数 1 - 改量数 1 - 改量数量数 1 - 改量数 1 - 改量数 1 - 改量数 1 - 改量数量数 1 - 改量数 1 - 改量数 1 - 改量数 1 - 改量数量数 1 - 改量数 1 - 改量 1 - 动量 1
谐波	CURRENT HARMONICS
波形	
电能表	1 - 键▶总计/分计指示切换 <u>kkh</u> <u>kkh</u> <u>kkh</u> <u>kvarh</u> <u>e0000000.0</u> <u>kvarh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e00000000.0</u> <u>kkh</u> <u>e000000000.0</u> <u>kkh</u> <u>e0000000000.0</u> <u>kkh</u> <u>e000000000.0</u> <u>kkh</u> <u>e000000000.0</u> <u>kkh</u> <u>e000000000.0</u> <u>e00000000.0</u> <u>e000000000.0</u> <u>e00000000.0</u> <u>e00000000.0</u> <u>exvarh</u> <u>e000000000.0</u> <u>evarh</u> <u>e000000000.0</u> <u>evarh</u> <u>e0000000000.0</u> <u>evarh</u> <u>e000000000.0</u> <u>evarh</u> <u>e000000000.0</u> <u>evarh</u> <u>e000000000.0</u> <u>evarh</u> <u>e000000000.0</u>
事件日志	1 - 事件描述 2 - 事件时间标签 3 - 事件 序号/总数 1 <u>EUENT LOG</u> NR. 020 CODE: E0101 02/05/12 10:42:02 MODE CHIPHGE TO: MAN MODE CI-ISEL CID 030/0355
扩展状态	OUT 4IN RS 232 001703 Million 2011 001703 Million 2011 001710 INPO2 INPO3 INPO4
实时时钟	DATE / TIME 7:17:09 Anternass 02/09/2012 Provided verse For ded verse For ded verse For ded verse For ded verse
系统信息	1 - 软件 硬件 2 一硬件 参数版本级别 2 2 - 工厂/控制屏名称 3 2 3 - 控制屏內部温度 3

注意:如果相应功能禁用,上述一些页面将无法显示。如:如果限值功能没有编程,相应页面将无法显示。

谐波分析页面

- PFC8 内部,可以激活快速傅立叶谐波分析计算,最高可计算至 31 次谐波:
 - 线电压
 - 相电压
 - 电流
- 每一个测量值都有一个显示页面用棒状图显示谐波分量(波谱)
- 每一列对应于一次谐波,偶次谐波和奇次谐波。第一列对应总谐波失真(THD)
- 直方图的每一列被分为三部分,分别对应相 L1、L2、L3
- 谐波分量数值以相对于基波(系统频率)的百分比表示
- 可以用数字方式显示谐波分量,按<和▶选择谐波次序,屏幕底端将显示一个小箭头, 指向选定列和三相数值的相对百分比
- 图表的垂直刻度在四个满刻度值中自动选择,取决于有最大值的列

1-选定次序的数字值	(CURRENT HARMONICS)
	57. 07. 11. 11. 11. 11. 11. 11. 11. 1

波形页面

- 该页面图形显示 PFC8 读取的电压和电流信号波形
- 可以每次查看一相,按键▶选择
- 垂直刻度(幅值)自动缩放以适应屏幕的最佳显示
- 水平轴(时间)显示两个连续周期波形供查看
- 图形每秒自动更新

可扩展性

- 因有扩展总线, PFC8 可通过 EXP 模块进行扩展
- 一次最多可扩展至 4 个 EXP 模块
- 支持的 EXP 模块如下:
 - 附加步
 - 通讯模块
 - 数字量输入输出模块
 - 模拟量输入输出模块
- 插入扩展模块步骤
 - 移除 PFC8 电源

- 移除扩展插槽保护盖
- 将模块上部卡钩插入扩展插槽上部的四方小孔中
- 向下旋转模块插入至总线
- 按压直至模块底部卡钩到位

- 开机后, PFC8 自动识别所连接 EXP 模块
- 如果系统配置不同于上次(增加或减少一个模块),本体单元将要求用户确认新的配置。
 确认后,新配置被保存并立即生效,否则配置不符的信息将在随后的每次系统开机时显示,如下:

- 当前的系统配置显示在专用页面上(扩展模块),可以看到所插模块数量、类型和模块 状态
- 输入输出编号显示在每个模块的下方
- 每一个输入输出和通讯通道的状态(接通/断开)以反色高亮显示

附加资源

- 扩展模块提供的附加资源可通过专用设置菜单设置
- 与扩展模块相关的设置菜单随时可以访问,即使没有扩展模块连接在本体上
- 因为同类型模块可能不止一个(如两个通讯接口模块),设置菜单将分别按序号显示
- 下表说明每组一次最多安装的模块数。全部模块数量不可超过4个

PFC8 自动功率因数控制器技术手册 V1.0

模块类型	型 号	功能	最大数量	插槽位置
	EXP 1006	两路继电器步数	4	任意
增加步数	EXP 1001	4路静态步数(快 速)	2	任意
	EXP 1010	USB	2	位置1或2
	EXP 1011	RS232	2	位置1或2
港江	EXP 1012	RS485	2	位置1或2
地叭	EXP 1013	以太网	1	位置1或2
	EXP 1014	Profibus®DP	1	待定
Γ	EXP 1015	GSM-GPRS	1	位置2
	EXP 1000	4路输入	2	位置1或2
数字量输入输 出	EXP 1002	两路输入 + 两路 静态输出	4	位置1或2
	EXP 1003	两路继电器输出, 每路一个公共端	4	任意
	EXP 1004	两路模拟量输入	2	位置1或2
模拟重输入输 [山	EXP 1005	两路模拟量输出	2	位置1或2
Ш	EXP 1016	电容器谐波保护	4	任意

通讯通道

- PFC8 支持最多两个通讯模块(显示为 COMn)。通讯设置菜单这时为端口设置分为两部分 (n=1, 2)
- 通讯通道之间互相独立,包括硬件连接和通讯协议
- 两通道可同时工作
- 为了获得一种仅带一个以太网端口的比较经济的配置,激活网关功能,可以使一个带有以太网端口和 RS485 端口的 PFC8 访问其他仅配备了 RS485 的 DCRG 设备
- 在这个网络中,带有以太网端口的 PFC8 参数 P16. n. 09 通道功能(通道 COM1 和 COM2) 设置为网关,其他 PFC8 使用标准默认配置

输入、输出、内部变量、计数器和模拟量输入

- 输入输出由代码和序号数字组成,如:代码 INPx 表示数字量输入,x 是输入序号。同 理,代码 OUTx 表示数字量输出。
- 输入输出的序号只与他们的安装位置有关,从左到右顺序标注
- 最多8个与外部模拟量传感器(温度、压力、流量等)连接的模拟量输入(AINx)。传感 器数值读取后可以转换成任何计量单位,不仅能在显示屏上查看,还可以通过通讯总线 传输出去。模拟量数值显示在专有页面上,这些值可以用来驱动连接到内部输出或外部 输出的门限 LIMx
- 扩展输入输出序号从本体单元最后一个输入输出连续计数。如: 0UT1 到 0UT8 是本体单元的数字输出,那么扩展模块的第一个数字输出则是 0UT9 下表是输入输出的序号编号:

代码	说明	本体	扩展模块EXP…
INPx	数字量输入	—	18
OUTx	数字量输出	18	9…16
COMx	通讯端口	-	12
AINx	模拟量输入	—	14
AOUx	模拟量输出	_	14

- 类似方式,还有一些内部的位变量(标签)与输出或他们之间的组合相关。如:可以将 一些限值应用到系统的测量上(电压、电流、功率等)。这里,命名为LIMx的内部变量 在测量值超出用户定义的限值时将被激活
- 此外,有多达8个计数器(CNT1…CNT8),可以用来作外部输入(通过数字量输入INPx)的脉冲计数或某种条件发生的次数。如:定义一个门限LIMx作为计数来源,然后就可以计量一个测量值超过某种门限多少次

代码	说 明	范围
LIMx	限值	1…16
REMx	远程变量	1…16
UAx	用户报警	18
PULx	能量消费脉冲	13
CNTx	可编程计数器	18

- 下表是受控于 PFC8 的所有输入输出和内部变量以及范围

限值

- LIMn 限值是一个内部变量,其状态依赖于所有测量值中用户设定的一个特定测量值的 超限值(如,总有功功率大于 25KW)
- 因为限值范围很宽,为了易于设置限值,每一个限值都可以用一个基数和一个乘数因子 设置,如: 25x1k = 25000
- 针对每一个 LIM, 都有两个限值 (上限和下限)。上限值必须大于下限值
- 门限的意义根据下列功能决定
 最小功能:下限值定义分闸点,而上限值用于复位。当选定测量值低于下限值并持续编程设定时间,LIM分闸;当测量值超过上限整定值,经过整定延时,LIM状态复位。
 最大功能:上限值定义分闸点,而下限值用于复位。当选定测量值超过上限值并持续编程设定时间,LIM分闸;当测量值低于下限整定值,经过整定延时,LIM状态复位。
 最大+最小功能:上下限值都用于定义分闸点。当选定测量值超过上限值或低于下限值并持续相应编程设定时间,LIM分闸;当测量值回到限制范围,LIM状态立即复位。
- 分闸既可以表示激活也可以表示禁止,取决于"正常状态"设置
- 如果 LIMn 锁存激活,只能在命令菜单使用特定命令手动复位
- 见设置菜单 M24

远程变量(REMx)

- PFC8 可以管理最多 16 个远程变量 (REM1 ··· REM16)
- 用户可以通过通讯协议修改这些变量状态,并且他们可以与输出组合在一起使用
- 例如:用一个远程变量 REMx 作为一个输出(OUTx)的触发,你可以通过监控软件自由控制,使一个继电器得电或失电。这允许使用 PFC8 输出继电器驱动照明或类似的负载

用户报警(UAx)

- 用户可以定义多达 8 个可编程报警(UA1…UA8)
- 对于每一个报警,可以定义为:
 - 触发源,产生报警的条件
 - 信息文本,条件发生时显示
 - 报警属性(就像标准报警),就是报警如何与功率因数校正屏控制进行关联
- 产生报警的条件,例如:可以是超出限值。这时,触发源将是一个限值 LIMx
- 相反,如果报警显示的是外部数字量输入状态,则触发源将是 INPx
- 对于每一条报警,用户可以定义一条自定义文本信息显示在报警页面
- 用户报警的属性可以同正常报警一样定义。你可以选择一条报警是否切除某个电容器组、
 关闭全局报警输出,等等。见报警属性章节。
- 当同时又几条报警处于活动状态,他们将顺序显示,全部编号显示在状态条上
- 在命令菜单使用特定命令清除一条带锁存编程的报警
- 关于报警编程和定义,参见设置菜单 M26

主−从机配置

- 主-从机配置适用且可进一步增加 PFC8 的应用灵活性。它允许在大功率等级的工厂使用, 对于功率因数校正屏的级联系统,每块屏都有自己的控制器和相关的电容器组
- 该解决方案允许工厂在任何需要增加功率时以模块方式扩展功率因数校正系统
- 此种配置中,测量仅由第一个控制器(主机)完成,主机可以控制最多 32 个逻辑步, 然后测量值发送给所有从机
- 从机按照主机指示驱动自己的步,执行"就地"保护,如控制屏或电容器过热、无电压释放、谐波保护,等等
- 最多的可能配置是一个主机带 8 个从机

示例1(并联应用)

对一个 400kvar 系统,总共分为 8 个逻辑步。系统配置为两块屏(主机屏和从机屏)。每一 块屏 8 个逻辑步,每步 25kvar。逻辑步被编程为 8 组×50kvar。第一步对应于主机和从机

的 0UT1,同理,第二步对应于主机和从机的 0UT2.以此类推。当步1激活,第一个电容器组 连接(主机 25kvar,从机 25kvar,总共 50kvar)。此时,参数 p02.07最小步功率必须设置 (在主机)为结果值 50kvar。

主机编程:

参数	值	说明
P02. 07	50	50kvar,主机和从机每步各25,
P03. 01. 01 ··· P03. 08. 01	1	所有8个逻辑步都是50kvar
P04. 01. 01 ··· P04. 08. 01	步1…8	主机输出0UT1…8由逻辑步1…8激活
P05. 01	COMx	用于连接的通讯端口
P05. 02	主机	作为主机
P05. 03	激活	激活从机1
P06. 01. 01 ··· P06. 08. 01	步1 ··· 8	从机输出0UT1…8由逻辑步1…8激活

从机1编程:

参数	值	说明
P05. 02	从机1	作为从机1

示例2(串联应用)

一个系统 18 步,每步 40kvar,分为三块相同的控制屏,每屏 6 步, 240kvar。对于每一块 从机控制屏,控制器的 8 个继电器输出可以如下使用:前 6 个 (0UT1…6)用于步控制,第七 个 (0UT7)用于冷却风扇,最后一个 (0UT8)用于报警。在主机屏上,有 18 个 40kvar 步。步 1 到 6 对应于主机的 0UT1…6,7 到 12 对应与从机 1 的 0UT1…6,最后 13 到 18 对应与从机 2 的 0UT1…6。这种情况下,参数 P02.07 最小步功率必须设置(在主机)为结果值 40kvar

主机编程:

参数	值	说明
P02. 07	40	40kvar
P03. 01. 01P03. 18. 01	1	所有18个逻辑步都是40kvar
P04. 01. 01P04. 06. 01	步1…6	主机输出0UT1…6由逻辑步1…6激活
P04. 07. 01	风扇	主机0UT7控制冷却风扇
P04. 08. 01	所有 glb1	主机OUT8控制全局报警1
P05. 01	COM1	用于连接的通讯端口
P05. 02	主机	作为主机
P05. 03····P05. 04	激活	激活从机1和2
P06. 01. 01 ··· P06. 06. 01	步7…12	从机1输出0UT1…6由逻辑步7…12激活
P06. 07. 01	风扇	从机1的OUT7控制冷却风扇
P06. 08. 01	全局报警1	从机1的0UT8控制全局报警1
P07. 01. 01 ··· P07. 06. 01	步13…18	从机2输出0UT1…6由逻辑步13…18激活
P07. 07. 01	风扇	从机2的0UT7控制冷却风扇
P07. 08. 01	全局报警1	从机2的0UT8控制全局报警1

从机1编程:

参数	值	说明
P05. 02	从机1	作为从机1

从机2编程:

参数	值	说明
P05. 02	从机2	作为从机2

- 主从机之间的通讯通过隔离 RS485 通讯模块 EXP1012 实现,各装一块。最远距离可达 1000 米。
- 所有编程都在主机上完成:设置系统类型、CT、逻辑步以及主从机的逻辑和物理输出之间的配对步。然后程序自动下传给从机
- 在从机上,需要设置的只是参数 P05.02 从机角色
- 与此功能相关的参数都集成在菜单 M05 中
- 如果主从机之间的通讯断开,将产生故障报警,且所有从机输出断开

- 如果对无电压释放检测灵敏,从机一定要连接到线电压,但不必连接电流输入
- 每一个从机显示主机发送的功率因数校正数据,并且带有全系统(常规窗口右上角)的
 32个逻辑步状态和就地输出状态(窗口底部)

- 如果系统报警与所有步相关,如:电流信号丢失、过电压、无电压释放等,所有主从机 输出的逻辑步都将断开
- 相反,如果一个报警仅影响一块屏(无论主机还是从机),如温度或谐波保护,那么仅 仅是报警屏中控制步的输出断电,系统的其余部分继续工作,即使效率有限
- 每一个报警都有一个特定属性,称为从机断开;它表示报警影响整个系统(属性设置为 常规)或仅仅是相关屏(就地)。见报警表。

IR 编程接口

- PFC8 的参数可以通过前面板光电隔离端口配置,使用 IR-USB 编程狗(型号 CX01)或 IR-WiFi 狗(型号 CX02)
- 该编程端口有如下优点
 - 无需接触设备背部或打开电气柜即可配置和维护 PFC8
 - 与内部电路电气隔离,最大程度保障操作人员安全
 - 高速数据传输
 - 前面板防护等级 IP54
 - 避免非授权人员设置设备参数
- 只需在前面板将 CX…狗插入对应插孔即可;设备将互相识别并且编程狗的连接指示 LED 显示为绿色

通过 PC 进行参数设置

- 可以使用 DCRJ 远程控制软件将已经编程的设置参数从 PFC8 传输给 PC 机硬盘,反之亦 然
- 从 PC 到 PFC8,参数可以进行部分传输,可以仅传输特定菜单的参数
- 除参数设置外, PC还可以用作:
 - 自定义图标,开机和每次退出键盘设置时显示
 - 创建一个信息页面,可以输入应用信息、特性、数据等

从前面板设置参数

- 打开参数编程菜单(设置)
 - 切换到手动模式并断开所有步
 - 在查看的测量值页面,按√进入主菜单
 - 选择图标 ,如果显示灰色不可用,则必须输入密码(见密码访问章节)
 - 再次按√打开设置菜单
- 显示如下,可看到所有功能参数的子菜单
- 使用键▲或▼选择所需菜单并按√确认
- 按◀返回参数值查看

参数设置:菜单选择	(SETUP MENU)
	MØTEUTALTY MØZ GENERAL
	M03 STEPS M04 MASIER OUTPUTS
	M06 SLAVE1 OUTPUTS
	SEL BEDIT DEXIT

下表列出可用子菜单

代码	菜单	说明		
M01	实用功能	语言,明亮度,显示页面等		
M02	常规	控制屏/系统数据		
M03	步	电容器步配置		
M04	主机输出	主机可编程输出		
M05	主机/从机	设备角色(主机还是从机)		
M06	从机1输出	从机1可编程输出		
•••	•••	•••		
M13	从机8输出	从机18可编程输出		
M14	可编程输入	可编程数字量输入		
M15	密码	密码访问权限管理		
M16	通讯	通讯通道参数		
M17	基本保护	控制屏基本保护		
M18	谐波保护	谐波保护(EXP1016模块)		
M19	其他	各种设置		
M20	限值	测量值的限值		
M21	计数器	通用编程计数器		
M22	模拟量输入	可编程模拟量输入		
M23	模拟量输出	可编程模拟量输出		
M24	能量脉冲	能量表计递增脉冲		
M25	用户报警	可编程用户报警		
M26	报警属性	报警触发的动作		

- 选择子菜单并按√显示参数
- 每一参数显示都包含代码、说明和当前整定值

- 修改一个参数,先选定再按√
- 如果输入的密码不是高级访问权限,则无法进入编辑页面,同时显示访问被拒信息
- 相反,如果权限被确认,则编辑页面显示如下

- 编辑屏幕显示后,参数设置可以通过键 ◀和 ▶ 修改。屏幕显示新的整定值同时条形图显示整定范围,最大值和最小值,上次整定值和工厂默认整定值。
- 按键◀和▲,设定最小值,按键▲和▶,设定最大值。
- 同时按◀+▶,整定值恢复为工厂默认值
- 在编辑文本过程中,键▲和▼用来选择字母数字,键◀和▶用来沿文本移动光标。同时

按下▲和▼将直接定位字符到字母"A"。

- 按√返回参数选择,输入值被保存。
- 按◀保存所有设置并退出设置菜单。控制器复位并返回到正常操作
- 如果用户超过2秒没有按任何键,系统将自动退出设置、不保存参数修改并返回到常规 视图
- 考虑到设置数据备份(可通过键盘修改设置值)可以存储在 PFC8 的 EEPROM 存储器中, 当需要时,这些数据可以恢复到工作存储器中。数据备份拷贝和恢复命令可以在命令菜 单中找到

参数表

 下面表格列出所有编程参数。对于每一个参数,可能的整定范围和工厂默认值以及参数 功能都有简要说明。某些情况下,显示屏上显示的参数因可用字符数的缩减与表中所列 有所不同。但参数代码可以作为参考。

M01 - 实用功能		测量单位	默认值	范围
P01. 01	语言		英语	英语 意大利语 法语 西班牙语 葡萄牙语 葡萄牙语 德语 波兰语 捷克语 俄语 自定义
P01.02	系统开机设置时钟		禁止	禁止-激活
P01.03	液晶显示器对比度	%	50	0-100
P01.04	显示器背光高亮度	%	100	0-100
P01.05	显示器背光低亮度	%	25	0-50
P01.06	切换到低背光时间	秒	180	5-600
P01.07	返回到默认页面	秒	60	禁止/10-600
P01.08	默认页面		主页面	(页面列表)
P01.09	系统说明		(空)	20个字符

注: 表中以阴影背景显示的参数对系统工作必不可少, 是操作所需的最小编程设置

- P01.01 选择显示文本语言
- P01.02 开机后自动时钟设置激活
- P01.03 液晶显示器对比度调整
- P01.04 显示器背光高亮度调整
- P01.05 显示器背光低亮度调整
- P01.06 低显示背光延时
- P01.07 无键盘操作返回默认页面的延时。如果设为禁止,将一直显示上一次手动选 定的页面
- P01.08 开机显示的默认页面和延时后返回的默认页面

P01.09 - 指定控制屏/系统的字符数字标识符名称。如果此处设置,它会作为主页标题显示。通过短信/电子邮件,相同的说明也用来作为远程报警/事件报告的识别 信息

M02 - 常規	测量单位	默认值	范围		
P02. 01	CT一次侧	A	禁止	禁止/1-30000	
P02. 02	CT二次侧	A	5	1/5	
P02. 03	工厂安装类型		3相	3相 单相	
P02. 04	电流值读取相		L3	L1 L2 L3 L1 L2 L3	
P02. 05	CT极性		自动	自动 – 正向 – 反向	
P02. 06	电压值读取相		L1-L2	L1–L2 L2–L3 L3–L1 L1–N L2–N L3–N L1–L2–L3 L1–L2–L3–N	
P02. 07	最小步功率	kvar	1.00	0.10-10000	
P02. 08	电容器额定电压	V	400	50-50000	
P02. 09	额定频率	Hz	自动	自动 - 50Hz - 60Hz - 可变	
P02.10	重连接时间	秒	60	1-30000	
P 02. 11	灵敏度	秒	60	1-1000	
P02.12	断开灵敏度	秒	禁止	禁止/1-600	
P02.13	整定值cosql(标准)		0.95IND	0.50IND - 0.50CAP	
P02.14	整定值cosq2		0.95IND	0.50IND - 0.50CAP	
P02.15	整定值cosq3		0.95IND	0.50IND - 0.50CAP	
P02.16	整定值∞sφ当系统产生有功功率时		0.95IND	0.50IND - 0.50CAP	
P02.17	整定值 + 误差		0.00	0-0.10	
P02. 18	整定值 - 误差		0.00	0-0.10	
P02. 19	当系统产生有功功率时断开所有步		禁止	禁止-激活	
P02. 20	系统额定电流	A	自动	自动/1-30000	
P02. 21	系统额定电压	V	自动	自动/100-60000	
P02. 22	系统电压类型		LV	LV-LV/MV-MV	
P02. 23	使用VT		禁止	禁止激活	
P02. 24	VT1一次侧	V	100	50-50000	
P02. 25	VT1二次侧	V	100	50-500	
P02. 26	VT2一次侧	V	100	50-50000	
P02. 27	VT2二次侧	V	100	50-500	
P02. 28	步投入模式		标准	标准 线性 快速	
P02. 29	静态投切延时	周	3	1-20	
P02. 30	激活Tanop整定值	anφ整定值 禁止 禁止-激活		禁止一激活	
P02. 31	Tanφ整定值		0	-1.732 ~ +1.732	

P02.01 - 电流互感器一次侧数值。如: CT800/5A,设置为800.如果设置为禁止,设备 开机后将提醒用户设置 CT,同时允许用户直接访问该参数

- P02.02 电流互感器二次侧数值。如: CT800/5A,设置为5
- P02.04 定义设备从哪一相并且几相读取电流信号。电流输入接线必须与此参数匹配。 支持 P02.06 所有组合
- P02.05 读取 CT 连接极性 自动 - 极性在开机时自动检测。只使用一个 CT 并且系统没有发电机设备 时可以使用
 - 正向 自动检测功能禁止。正向连接
 - 反向 自动检测功能禁止。反向连接
- P02.06 定义设备从哪一相并且几相读取电压信号。电压输入接线必须与此参数匹配。 支持 P02.04 所有组合
- P02.07 安装的最小步 Kvar 值 (等价于步权重 1)。P02.08 设定的额定电压对应的电 容器组的额定功率对应于三相应用的全部三个电容器
- P02.08 电容器组的额定铭牌电压, P02.07 对应于这一数值。如果电容器在非(低于) 额定电压下工作,设备将自动计算所需功率
- P02.09 系统工作频率。自动=开机后自动选择 50Hz 或 60Hz; 50Hz=固定在 50Hz; 60Hz= 固定在 60Hz
- P02.10 在手动和自动模式下,步断开后和重连接之间的最短时间。在此期间内,主页面相应步的序号显示为浅灰色
- P02.11 连接灵敏度(反应时间)。该参数设置控制器反应时间数值小,调整快(围绕整定值更精确,但步切换更频繁);相反,数值大,调整慢,步切换少。反应的延迟时间反比于到达整定值的需求步数:等待时间=(灵敏度/所需步数)。
 示例:设置反应时间为60秒,如果需求连接步权重是1,则期望时间是60秒(60/1=60);相反,如果共需4步,则期望时间是15秒(60/4=15)
- P02.12 断开灵敏度(反应时间)。与上一个参数同理,但是对应于断开。如果设置为 禁止,则断开灵敏度与上一参数相同
- P02.13 功率因数(cosq)的整定值(目标值)。数值作为标准应用
- P02.14 P02.15 另一种可选择的整定值,与带有相应功能的数字编程输入的组合
- P02.16 当系统相进线提供有功功率时使用的整定值(负有功功率/功率因数)
- P02.17 P02.18 整定值误差。当 cosφ在这些参数划定的范围内时,在自动模式下, 即使 △ kvar 大于最小步功率,设备也不会连接/断开步。
 注: + 表示"趋向于感性", - 表示"趋向于容性"。
- P02.19 如果设置为激活,当系统向进线提供有功功率(产生=负的有功功率和功率因数)时,所有步断开
- P02.20 系统额定电流。数值用于条形图的最大刻度,同时用于设置电流限值(以百分比表示)。如果设置为自动,则要用到 P02.01(CT 一次侧)的数值
- P02.21 系统额定电压。数值用于条形图的最大刻度,同时用于设置电压限值(以百分比表示)。如果设置为自动,则要用到P02.08(电容器额定电压)的数值
- P02.22 系统电压类型。根据此参数设置,必须使用相应的接线图。见手册后部分。
- P02.23…P02.27 最终接线图中是使用的电压互感器的数据
- P02.28 步连接模式选择。

标准 = 正常操作且自由选择的步

线性 = 步的连接仅从左到右递进,按照步的序号和 LIF0 (后进先出)逻辑。 当系统步的级别不同时,如果超出整定值,控制器将连接多步,而不是一步。

- P02.29 当一个步输出控制合闸后,系统测量采集暂停,暂停时间是由此参数指定的
 周波数(周),以允许外部静态模块连接电容器。该功能避免了调整时的震
 荡。根据静态模块制造商提供的技术特性(合闸时间)来设置此参数。
- P02.30 激活整定值设置为位移相位角的正切值(Tanφ)而不是余弦值(cosφ). 些欧洲国家的能源供应商作为参考

P02.31 - Tanφ整定值。负 Tanφ值对应于容性 cosφ

MO3 - 步(步n, n = 1…32)	测量单位	默认值	范围
P03. n. 01	步权重		禁止	禁止/1-99
P03. n. 02	步投入类型		接触器	接触器 静态

注: 该菜单分为 32 部分, 对应于 32 个可能逻辑步, 由 PFC8 控制

P03. n. 01 - 步 n 的权重,对应于最小步值。数字表示当前步功率对应 P02. 07 中设置的 最小步的倍数。如果禁止,该步禁用。

P03.n.02 - 步投入的设备类型。

M04 - 主机	输出(OUTn,n = 1…16)	测量单位	默认值	范围
P 04. n. 0 1	输出OUTn功能		n = 1…8 STPx n = 9…16 禁止	见输出功能表
P04. n. 02	通道编号x		$n = 1 \cdots 8$ $x = 1 \cdots 8$ $n = 9 \cdots 16$ x = 1	禁止/1-99
P04. n. 03	正常/取反输出		正常	正常-取反

注: 该菜单分为 16 部分, 对应于 16 个可能数字输出 0UT01…0UT16, 由主机 PFC8 控制; 0UT1…0UT8 位于本体, 0UT9…0UT16 位于最终安装的扩展模块上

P04.n.01 - 选定输出(见可编程输出功能表)的功能选择

P04.n.02 - 与上一参数编程功能相关的通道号。如:如果输出功能设置为报警 Axx, 并且想要此输出得电触发报警 A31,那么就设置为 31

P04. n. 03 - 当 P04. n. 01 在禁止状态时输出的状态: 正常 = 输出失电; 取反 = 输出得 电

M05 - 主/从	人机	测量单位	默认值	范围
P05. 01	主机-从机功能		禁止	禁止 COM1 COM2
P05. 02	设备角色		主机	主机 从机1 从机2 ···· 从机8
P05. 03	从机1激活		禁止	禁止-激活
P 05.0 4	从机2激活		禁止	禁止-激活
P 05.0 5	从机3激活		禁止	禁止-激活
P05.06	从机4激活		禁止	禁止-激活
P 05.07	从机5激活		禁止	禁止-激活
P05.08	从机6激活		禁止	禁止-激活
P05. 09	从机7激活		禁止	禁止-激活
P05.10	从机8激活		禁止	禁止-激活

P05.01 - 定义系统是否用于主从机配置。设置为禁止,系统工作为单机工作(正常配置)。如果设置为 COM1 或 COM2,则为主从机配置模式,设置值表示控制器之间的通讯通道

P05.02 - 定义当前设备是主机还是从机,从机后面跟一个序号

M06 - 从机	01 输出(OUTn,n = 1…	测量单位	默认值	范围
P06. n. 01	输出0UTn功能		$n = 1 \cdots 8$	见输出功能表
P06. n. 02	通道编号x		$n = 1 \cdots 8$ $x = 1 \cdots 8$ $n = 9 \cdots$ 16 $x = 1$	禁止/1-99
P06. n. 03	正常/取反输出		正常	正常-取反

P05.03…P05.10 - 激活单个从机的操作

注: 该菜单分为16部分,对应于16个可能数字输出0UT01…0UT16,由从机1的PFC8 控制;0UT1…0UT8位于本体,0UT9…0UT16位于最终安装的扩展模块上

P06.n.01 - 选定输出(见可编程输出功能表)的功能选择

P06.n.02 - 与前面参数编程功能相关的通道号。如:如果输出功能设置为报警 Axx, 并且想要此输出得电触发报警 A31,那么就设置为 31

P06. n. 03 - 当 P06. n. 01 被禁止后输出的状态: 正常 = 输出失电; 反向 = 输出得电

•••

MO7 - 从机 16)	02输出(OUTn, n=1…	测量单位	默认值	范围
P07. n. 01	输出OUTn功能		$n = 1 \cdots 8$ $STPx$ $n = 9 \cdots 16$ $STPx$	见输出功能表
P07. n. 02	通道编号x		$n = 1 \cdots 8$ $x = 1 \cdots 8$ $n = 9 \cdots 16$ $x = 1$	禁止/1-99
P07. n. 03	正常/取反输出		正常	正常-取反

同前一菜单,但对应于从机2.

•••••

M13 - 从机 16)	08 输出(OUTn, n=1…	测量单位	默认值	范围
P13. n. 01	输出0UTn功能		$n = 1 \cdots 8$ $STPx$ $n = 9 \cdots 16$ $STPx$	见输出功能表
P13. n. 02	通道编号x		$n = 1 \cdots 8$ $x = 1 \cdots 8$ $n = 9 \cdots 16$ x = 1	禁止/1-99
P13. n. 03	正常/取反输出		正常	正常-取反

同前一菜单,但对应于从机8

输出功能表

- 下表列出了所有可以归结为 OUTn 的可编程数字输出功能
- 每一个输出均可配置,都有正常或取反功能
- 一些功能需要另外一个数字参数,它定义在参数 P04. n. 02 指定的通道 x 中
- 参考菜单 M04 主机输出和 M06…M13 从机输出可获得更多细节

功能	说明
禁止	输出失电
激活	输出得电
步x	电容器步数x
全局报警1	全局报警1激活时得电
全局报警2	全局报警2激活时得电
全局报警3	全局报警3激活时得电
风扇	控制屏风机
手动模式	控制器在手动模式时激活
自动模式	控制器在自动模式时激活
门限阀值LIMx	由限值LIM (x=1…16)驱动输出
脉冲PULx	由脉冲PUL(x=1…6)驱动输出
远程变量REMx	由远程变量REM控制输出
报警A01-Axx	当选定报警Axx显示时,激活输出(xx = 报警编号)
报警UA1…Uax	当选定用户报警UAx显示时,激活输出(x = 1…8)

M14 - 可编	程输入(INPn, n=1…8)	测量单位	默认值	范围
P14. n. 01	输入INPn功能		禁止	见输入功能表
P14. n. 02	通道编号x		禁止	禁止/1…99
P14. n. 03	触点类型		常开	常开/常闭
P14. n. 04	延时接通时间	秒	0.05	0.00-600.00
P14. n. 05	延时断开时间	秒	0.05	0.00-600.00

注: 菜单分为8部分, 对应8个可能的数字输入。

P14.n.01 - 选定输入(见可编程输入功能表)的功能选择

P14. n. 02 - 与前面参数对应的可编程功能的通道号。如:如果输入功能设置为 Cxx 命 令菜单执行,想要输入执行命令 C07 则设置为 7.

P14. n. 03 - 触点的类型。常开或常闭

P14. n. 04 - 选定输入的触点闭合延迟时间

P14.n.05 - 选定输入的触点断开延迟时间

输入功能表

- 下表显示了所有 INPn 可编程数字输入的功能
- 每一个输入都可设置为相反的功能(常开-常闭),延迟各自独立的时间后得电或失电
- 一些功能需要另外一个数字参数,它定义在参数 P04. n. 02 指定的通道 x 中
- 参考菜单 M14 可编程输入获得更多细节

功能	说明
禁止	禁止输入
可配置	用户自由配置输入INPx,例如:用于产生用户报警UA或计数器 CNT的计数
自动模式	激活后,切换为自动模式
手动模式	激活后,切换为手动模式
选择cos 整定值x	激活后,选择cosφ整定值x(x=1…3)
键盘锁	锁住前面板键盘
设置锁	锁存设置菜单和命令菜单
报警禁止	禁止报警,禁止属性设置为激活

M15 - 密码		测量单位	默认值	范围
P15.01	激活密码		禁止	禁止-激活
P15.02	用户级别密码		1000	0-9999
P15.03	高级用户密码		2000	0-9999
P15.04	远程访问密码		禁止	禁止/1-9999

P15.01 - 如果设置为禁止,密码管理禁用,任何人都可以访问设置和命令菜单

P15.02 - P15.01 激活后,此密码对应用户级别。见密码访问章节

P15.03 - 同 P15.02, 高级用户

P15.04 - 如果是一个数值, 是从遥控点通过串行口发送命令的代码

M16 -通讯(COMn,n=12)	测量单位	默认值	范围
P16.n.01	节点通讯地址		01	01-255
				1200
				2400
				4800
D16 = 02	油 由	hnc	0600	9600
P10.II.UZ	还没	phs	9000	19200
				38400
				57600
				115200
				8位 - 无校验(n)
				8位 - 奇校验
P16.n.03	数据格式		8位-n	8位 - 偶校验
				7位 - 奇校验
				7位 - 偶校验
P16.n.04	停止位		1	1 - 2
	协议		Modbus RTU	Modbus RTU
P16.n.05				Modbus ASCII
				Modbus TCP
P16 n 06	ID+批 扑		192.168.1.1	000.000.000.000-
110.11.00				255.255.255.255
P16 n 07	子网掩码		255 255 255 0	000.000.000.000-
110.11.07	ር ዛ፭ባርነገር		233.233.233.0	255.255.255.255
P16.n.08	IP端口		1001	0-9999
				从机
P16.n.09	通道功能		从机	网关
	· · · · · · · · · · · · · · · · · · ·		141-1 A. 141-1	镜像
P16.n.10	各尸瑜/服务器		服务器	各尸瑜/服务器
P16.n.11	远程IP地址		000.000.000.000	000.000.000.000-
			500000000	255.255.255.255
P16.n.12	远桯IP端口		1001	0-9999
P16.n.13	IP网关地址		000.000.000.000	000.000.000.000-
1 10.11.10				255.255.255.255

注: 该菜单分为两部分, COM1 和 COM2。前面板 IR 通讯端口是固定设置, 无需设置。

P16.n.01 - 通讯协议相关串行(节点)地址

P16. n. 02 - 通讯端口传输速度

- P16. n. 03 数据格式。7 位设置仅用于 ASCII 协议
- P16.n.04 停止位
- P16.n.05 通讯协议
- P16. n. 06…P16. n. 08 TCP-IP 地址,用于以太网连接。其他通讯方式不使用这些参数
- P16. n. 09 通讯通道用途。从机 = 从机 Modbus; 网关 = 连接以太网和串行口; 镜像 = 远程控制屏镜像(预留功能,不可用)
- P16. n. 10 激活 TCP-IP 功能。服务器 = 等待远程客户端连接;客户端 = 与远程服务 器建立连接

P16. n. 11 ··· P16. n. 13 - 当 P16. n. 10 设置为客户端时用于连接远程服务器的地址

M17-基本保	护	测量单位	默认值	范围
P17.01	温度测量单位		°C	°C/°F
P17.02	控制屏内部温度的测量源		内部传感器	内部传感器/模拟量输入
D17.02	这次日		4	
P17.03			1	1-99
P17.04	风扇开启温度	0	50	0-212
P17.05	风扇停止温度	0	45	0-212
P17.06	控制屏内部温度报警限值	0	55	0-212
P17.07	电容器电流过载		激活	禁止-激活
P17.08	电容器电流过载限值	%	125	禁止/100-150
P17.09	步直接断开限值	%	150	禁止/100-200
P17.10	电流过载报警复位时间	分钟	5	1 - 30
P17.11	步微调		禁止	禁止 - 激活
P17.12	故障步报警限值	%	禁止	禁止/25-100
P17.13	最高电压限值	%	120	禁止/90-150
P17.14	最低电压限值	%	禁止	禁止/60-110

- P17.02 定义温度测量传感器类型。内部传感器 控制器自带传感器;模拟量输入
 x 通过连接到模块 EXP1004 的 PT100 测量;NTCx -通过连接到模块 EXP1016
 的 NTC 测量
- P17.03 通道号码, 与 P17.02 对应
- P17.04 P17.05 启停控制屏风机温度,单位同 P17.01
- P17.06 控制屏温度过高产生报警 A07 的限值
- P17.07 激活电容器电流过载测量, 根据实际电压波形计算

注: 该保护功能仅在电容器未安装滤波器装置(如电感或类似设备)时使用

- P17.08 经过与过载值成反比的积分延迟时间后,电容器过载保护(报警 A08)的跳闸 限值
- P17.09 限值,超出此值的过载跳闸积分延迟时间清零,导致保护和报警的直接跳闸
- P17.10 过载报警复位延迟时间
- P17.11 激活步的实际功率测量,连接一次,执行一次。在测量计算中,吸收的电流
 对应于安装的整体负荷。每次投切完成的步功率计算都有调整(微调)并且
 显示在步时间统计页面
- P17.12 步剩余功率百分比限值,步剩余功率与主菜单编程设置的原始功率之比。低于此限值,产生报警A10(步失败)
- P17.13 最高电压报警限值,对应于 P02.21 中的额定电压,高于此值,将产生报警 A06(电压过高)
- P17.14 最低电压报警限值,对应于 P02.21 中的额定电压,低于此值,将产生报警 A05(电压过低)

M18-谐波保	护(HARn,n=14)	测量单位	默认值	范围
P18.n.01	CT一次侧	Α	5	1-30000
P18.n.02	CT二次侧	Α	5	1/5
D10 n 02	CT存住		Jin Aron	2 in Aron
P10.II.05			2 III AIOII	1 balanced
P18.n.04	额定电流	A	5	1-30000
				全局
				步1
P18.n.05	CT位置		全局	步2
				步8
P18.n.06	电流限值	%	禁止	禁止 /100-200
P18.n.07	电流总谐波失真限值	%	禁止	禁止/1-200
P18.n.08	5次谐波电流限值	%	禁止	禁止/1-200
P18.n.09	7次谐波电流限值	%	禁止	禁止/1-200
P18.n.10	11次谐波电流限值	%	禁止	禁止/1-200
P18.n.11	13次谐波电流限值	%	禁止	禁止/1-200
P18.n.12	温度报警限值1	0	55	禁止/1-212
P18.n.13	温度报警限值2	0	55	禁止/1-212

注: 该菜单参数对应于使用谐波保护模块 EXP1016 时相关保护

P18.n.01 - P18.n.02 - CT 一次侧和二次侧数值,用于功率因数校正屏测量电流,且 连接到谐波保护模块

P18.n.03 - 电流测量, 接线方式:

2 in Aron - Aron 配置, 使用 2 个 CT 读取 3 相电流

1 balanced - 1个CT,读取单相电流

P18. n. 04 - 正常条件下流经功率因数校正支路的额定电流

P18. n. 05 - 谐波保护测量 CT 所在电流支路

P18. n. 06 - 功率因数校正支路最大电流限值,用于产生报警 A11

P18. n. 07 - 功率因数校正支路的电流总谐波失真最大限值,用于产生报警 A12

- P18. n. 08 功率因数校正支路的 5 次谐波分量限值,用于产生报警 A13
- P18. n. 09 功率因数校正支路的7次谐波分量限值,用于产生报警A14

P18. n. 10 - 功率因数校正支路的 11 次谐波分量限值,用于产生报警 A15

P18. n. 11 - 功率因数校正支路的 13 次谐波分量限值,用于产生报警 A16

P18. n. 12 - P18. n. 13 - 连接到谐波保护模块上的传感器最大温度限值 1 和 2, 用于 产生报警 A17 和 A18

M19 - 其他		测量单位	默认值	范围
P19.01	切换到手动模式时步断开		禁止	禁止-激活
P19.02	维护间隔1	小时	9000	1-30000
P19.03	维护模式1		总是	总是 步投入
P19.04	维护间隔2	小时	9000	1-30000
P19.05	维护模式2		步投入	总是 步投入
P19.06	维护间隔3	小时	9000	1-30000
P19.07	维护模式3		步投入	总是 步投入

P19.01 - 如果设置为激活,则从自动模式切换到手动模式时,步的断开按顺序进行

P19.02…P19.07 - 定义预计维护的3个时间间隔。每一个间隔,持续时间以小时计, 且计时模式可以设置。

总是 - 控制通电计时总是有效

步投入 - 只有当步投入/连接时小时计数开始递增,当时间到,产生报警 A20、A21、A22 (报警必须激活)。

M20 - 限值(LI	Mn,n=116)	测量单位	默认值	范围
P20.n.01	参考测量值		禁止	禁止-(测量值)
P20.n.02	通道号x		1	禁止/1-99
P20.n.03	功能		最大	最大 - 最小 - 最小+最大
P20.n.04	上限		x1	-99999到+9999
P20.n.05	乘数因子		0	/100到x100k
P20.n.06	延时	秒	0	0. 0-600. 0
P20.n.07	下限		0	-99999到+9999
P20.n.08	乘数因子		x 1	/100到x100k
P20.n.09	延时	秒	0	0. 0-600. 0
P20.n.10	空闲状态		禁止	禁止-激活
P20.n.11	存储		禁止	禁止-激活

注: 该菜单分为 16 部分, 对应限值 LIM1…LIM16

P20. n. 01 - 定义 PFC8 的哪一个测量值用于该限值

P20. n. 02 - 当参考测量值取自内部多通道测量时(如模拟量输入 AINx)需要的通道号

P20. n. 03 - 定义限值的操作模式

最大 - 当测量值超过 P20. n. 04 时 LIMn 被激活,低于 P20. n. 07 时复位 最小 - 当测量值低于 P20. n. 07 时 LIMn 被激活,高于 P20. n. 04 时复位 最小+最大 -当测量值超过 P20. n. 04 或低于 P20. n. 07 时,LIMn 都被激活 P20. n. 04 - P20. n. 05 - 定义上限,由 P20. n. 04 乘以 P20. n. 05 决定

P20.n.06 - 上限跳闸延时

P20. n. 07 - P20. n. 09 - 同上, 但对应下限

P20. n. 10 - 反转 LIMn 的状态

P20. n. 11 - 定义限值是否锁存、手动通过命令菜单清除(激活)还是自动复位(禁止)

M21-计数器	(CNTn,n=18)	测量单位	默认值	范围
D21 - 01	计新酒		林正	禁止-激活-INPx-OUTx-LIMx-
P21.11.01	日奴你		示止	REMx
P21.n.02	通道号x		1	禁止/1-99
P21.n.03	乘数因子		1	1-1000
P21.n.04	除数因子		1	1-1000
P21.n.05	计数器说明		CNTn	(文本 - 16字符)
P21.n.06	测量单位		Umn	(文本 - 6字符)
D21 n 07	有台派		林山	禁止-激活-INPx-OUTx-LIMx-
P21.N.07	复议源		示止	REMx
P21.n.08	通道号		1	禁止/1-99

注: 该菜单分为8部分, 对应计数器 CNT1…CNT8

P21. n. 01 - 使计数器递增的信号(上升沿)。可以是 PFC8 开机(激活),超出限值(LIMx) 或一个外部输入(INPx),等等

P21.n.02 - 上一参数对应的通道号
P21.n.03 - 乘数因子K。计数脉冲乘上这个数然后显示出来
P21.n.04 - 分数K。计数脉冲除以这个数然后显示出来,如果不是1,计数器以两位小数显示

- P21. n. 05 计数器说明, 16字符自定义文本
- P21. n. 06 计数器测量单位, 6字符自定义文本
- P21.n.07 计数器清零信号。此信号触发,计数清零

P21.n.08 - 与上一参数对应的通道号

M22 - 模拟量辂	俞入(AlNn,n=14)	测量单位	默认值	范围
P22.n.01				禁止
				0••••20mA
	給 λ米刑		林正	4…20mA
	個八天生		示止	0••••10V
				-5V····+5V
				PT100
P22.n.02	起始刻度值		0	-9999 ~ +9999
P22.n.03	乘数因子		x1	/100 到 x1k
P22.n.04	终止刻度值		100	-9999 ~ +9999
P22.n.05	乘数因子		x1	/100 到 x1k
P22.n.06	说明		AINn	(文本 - 16字符)
P22.n.07	测量单位		UMn	(文本 - 6字符)

注: 该菜单分为4部分,对应扩展模块 EXP1004 模拟量输入 AIN1…AIN4

P22. n. 01 - 指定连接模拟量输入的传感器类型. 传感器必须按选定类型连接到合适的 端子上,见扩展模块手册

- P22. n. 02 P22. n. 03 定义传感器信号显示的最小值,如根据类型(0mA、4mA、0V、 -5V)定义的起始刻度
 - 注: 这些参数不用于 PT100 传感器类型
- P22. n. 04 P22. n. 05 定义传感器信号显示的最大值,如根据类型(20mA、10V、+5V) 定义的终止刻度

注: 这些参数不用于 PT100 传感器类型

- P22. n. 06 与模拟量输入相关的测量单位, 16 字符文本
- P22. n. 07 测量单位, 6字符自定义文本。如果输入时 PT100 类型, 且单位是°F, 温度将以华氏温度显示, 否则以摄氏温度显示。

应用示例:使用模拟量 AIN3 从一个电子液位传感器读取 4…20mA 电流信号,在屏幕上显示 "Reserve fuel tank level(储油箱液位)",满刻度 1500 升

- 因此,对应 AIN3 的菜单第3部分编程如下:
- P22. 3. 01 = $4 \cdot \cdot \cdot 20 \text{mA}$
- P22.3.02 = 0
- P22. 3. 03 = x1
- P22. 3. 04 = 1500
- P22. 3. 05 = x1
- P22.3.06 = "Reserve tank level(储油箱液位)"
- P22.3.07 = 升

M23 - 模拟量输	俞出(AOUn,n=14)	测量单位	默认值	范围
				禁止
				0••••20mA
P23.n.01	输出类型		禁止	4•••20mA
				0••••10V
				−5V•••+5V
P23.n.02	参考测量值		禁止	禁止 – (测量值)
P23.n.03	通道号x		1	禁止/1-99
P23.n.04	起始刻度值		0	-9999 $^{\sim}$ +9999
P23.n.05	乘数因子		x 1	/100 到 x1k
P23.n.06	终止刻度值		0	-9999 ~ +9999
P23.n.07	乘数因子		x1	/100 到 x1k

注: 该菜单分为4部分,对应扩展模块 EXP1005 模拟量输出 A0U1 ··· A0U4

P23. n. 01 - 指定模拟量输出类型. 传感器必须按选定类型连接到合适的端子上,见扩展模块手册

P23. n. 02 - 模拟量输出依据的测量值

P23. n. 03 - 参考测量值是一个内部多通道测量值, 如 AINx 时对应的通道

P23. n. 04 - P23. n. 05 - 定义相应于起始刻度(最小值,如 0mA、4mA、0V、-5V)的 测量值

P23. n. 06 - P23. n. 07 - 定义相应于终止刻度(最大值,如 20mA、10V、+5V)的测量 值

应用示例:使用模拟量 A0U2 发送一个正比于总有功功率 0 到 500kW 的 0…20mA 信号 因此,对应 A0U2 的菜单第 2 部分编程如下:

P23.2.01 = 0…20mA P23.2.02 = kW tot P23.2.03 = 1(不使用) P23.2.04 = 0 P23.2.05 = x1 P23.2.06 = 500

P23. 2. 07 = x1k

M24 - 脉冲(PU	Ln,n=16)	测量单位	默认值	范围
P24.n.01	脉冲源		禁止	禁止-K\h-Kvarh-KVAh
P24.n.02	计数单元		100	10/100/1k/10k
P24.n.03	脉冲宽度	秒	0.1	0. 1-1. 00

注:该菜单分为6部分,对应能量消费脉冲变量 PUL1…6
P24.n.01 - 定义 PFC8 控制的6块可能的电能表中哪一块应该产生该脉冲 kWh = 有功电能; Kvarh = 无功电能; KVAh = 视在电能
P24.n.02 - 用于脉冲发送必须累积的能量数量(如10Wh,100Wh,1kWh,等等)
P24.n.03 - 脉冲宽度

应用示例:每0.1kWh输出,在输出OUT10上产生一个500ms的脉冲。 首先,内部脉冲变量必须产生,如PUL1. 因此,对应菜单第1部分编程如下: P24.1.01 = kWh(有功电能) P24.1.02 = 100kWh (对应 0.1kWh) P24.1.03 = 0.5 现在,输出 OUT10 (菜单 M04)如下编程与上述 PUL1 连接 P04.10.01 = PULx P04.10.02 = 1(PUL1) P04.10.03 = NOR

M25 - 用户报警(UAn,n=18)		测量单位	默认值	范围
P25.n.01	报警源		禁止	禁止-INPx-OUTx-LIMx-REMx
P25.n.02	通道号x		1	禁止/1-99
P25.n.03	文本		UAn	(文本 - 20字符)

注: 该菜单分为8部分,用于用户报警UA1…UA8

P25. n. 01 - 定义数字输入或内部变量, 激活时用于产生用户报警

P25.n.02 - 与上一参数对应的通道号

P25.n.03 - 显示在报警窗口的自定义文本

应用示例:当输入 INP5 接通时,UA3 产生一个用户报警,并显示"Doors open(柜门打开)"。

这里, 对应菜单3(用户报警UA3)编程如下:

P25.3.01 = INPx

P25. 3. 02 = 5

P25.3.03 = Doors open (柜门打开)

M26-报警属性	±(ALAn,n=130)	默认值	范围		
P26.n.01	报警激活	(见表)	禁止 - 激活		
P26.n.02	保持	(见表)	禁止 - 保持		
P26.n.03	操作模式	(见表)	自动 - 手动 自动		
P26.n.04	全局报警1	(见表)	禁止 - 全局报警1		
P26.n.05	全局报警2	(见表)	禁止 - 全局报警2		
P26.n.06	全局报警3	(见表)	禁止 - 全局报警3		
P26.n.07	步断开	(见表)	禁止 快速 逐级		
P26.n.08	从机断开模式	(见表)	全部 - 就地		
P26.n.09	输入禁止	(见表)	禁用 - 禁止		
P26.n.10	调制解调器连接	(见表)	禁止 - 调制解调器		
P26.n.11	不在LCD上显示	(见表)	禁止 - 不在LCD显示		
P26.n.12	报警延时	(见表)	禁止/1-120		
P26.n.13	延时单位	(见表)	分-秒		

P26.n.01 - 激活 - 报警激活。如不激活,则视为不存在

P26.n.02 - 保持 - 即使报警原因已经被清除,仍然保持报警

P26.n.03 - 操作模式 - 何种操作方式产生报警

P26. n. 04 - P26. n. 06 - 全局报警 1-2-3 - 触发功能输出

P26. n. 07 - 步断开模式 - 定义报警时,是否以及如何断开电容器步。三种选择之一: 禁止 = 步断开; 逐级 = 主机断开; 快速 = 直接断开

P26.n.08 - 从机断开模式 - 对于主从机应用,报警发生时,是断开系统(全部)所 有步,还是仅断开报警所在屏(就地)

P26. n. 09 - 禁止 - 可以通过禁止报警功能编程实现: 激活一个输入时暂时不报警

P26. n. 10 - 调制解调器连接 - 调制解调器被连接

P26.n.11 - 无 LCD - 报警正常,不在屏幕上显示 P26.n.12 - P26.n.13 - 延迟时间 - 报警发生前以分或秒表示的延迟时间

报警

- 报警发生时,屏幕上将显示一个报警图标、代码和用选定语言显示的报警说明

- 如果页面导航键被按下,弹出窗口显示报警指示会暂时消失,几秒钟后再次 重新显示
- 报警激活时,前面板靠近报警图标的红色 LED 将闪烁
- 如果激活,就地和远程报警蜂鸣器将会鸣叫
- 按√清除报警
- 如果报警清除不掉,则必须处理报警发生的原因
- 在一个或多个警报的情况下, PFC8 性能取决于活动报警的属性设置

报警说明

代码	报警	说明
A01	欠补偿	所有可用步都已连接,但cosφ与整定值相比呈感性
A02	过补偿	所有可用步都已连接,但cosφ与整定值相比呈容性
A03	电流太小	流经电流输入的电流小于测量范围的最小值如果工厂无负载通常会产生这种情况
A04	电流太大	流经电流输入的电流大于测量范围的最大值
A05	电压太低	测量值小于P17.14的限值
A06	电压太高	测量值大于P17.13的限值
A07	控制屏温度过高	测量值大于P17.06的限值
A08	电容器电流过载	电容电流过载计算值大于P17.08和/或P17.09的限值
A09	无电压释放	线电压输入发生无电压释放超过8ms
A10	步xx失败	步xx剩余功率百分比小于P17.12的限值
A11	谐波保护模块n 电流太大	谐波保护模块n所测电流有效值大于P18. n. 06的限值
A12	谐波保护模块n 电流总谐波失真太大	谐波保护模块n所测电流总谐波失真大于P18. n. 07的限值
A13	谐波保护模块n 5次谐波过大	谐波保护模块n所测5次谐波分量百分比大于P18. n. 08的限值
A14	谐波保护模块n 7次谐波过大	谐波保护模块n所测7次谐波分量百分比大于P18. n. 09的限值
A15	谐波保护模块n 11次谐波过大	谐波保护模块n所测11次谐波分量百分比大于P18. n. 10的限值
A16	谐波保护模块n 13次谐波过大	谐波保护模块n所测13次谐波分量百分比大于P18. n. 11的限值
A17	谐波保护模块n 温度1过高	谐波保护模块n所测温度1大于P18. n. 12的限值
A18	谐波保护模块n 温度2过高	谐波保护模块n所测温度2大于P18. n. 13的限值
A19	从机xx连接错误	从机x没有与主机通讯。RS485接线问题
Uax	用户报警x(x=18)	用户定义报警,见菜单M25
A20	维护间隔1已过	维护1间隔时数已过。维护服务后,用命令C16复位计数器
A21	维护间隔2已过	维护2间隔时数已过。维护服务后,用命令C17复位计数器
A22	维护间隔3已过	维护3间隔时数已过。维护服务后,用命令C18复位计数器

报警属性

每个报警可以分配不同的属性,包括用户报警(UAx):

- 激活 报警激活。如禁止,则不考虑
- 保持 即使报警原因已经被清除,仍然保持报警
- 操作模式 何种操作方式产生报警
- 全局报警 1-2-3 触发功能输出
- 步断开模式 定义报警时,是否以及如何断开电容器步。三种选择之一:
- 禁止 = 步断开; 逐级 = 主机断开; 快速 = 直接断开
- 从机断开模式 对于主从机应用,报警发生时,是断开系统(全部)所有步,还是仅 断开报警所在屏(就地)
- 禁止 可以通过禁止报警功能编程实现: 激活一个输入时暂时不报警
- 调制解调器连接 调制解调器作为设置中配置被连接
- 无 LCD 报警正常, 但不在屏幕上显示
- 延迟时间 报警发生前以分或秒表示的延迟时间

报警属性表

	默认报警属性													
代码	激活	保持	仅用于自动模式	全局报警1	全局报警2	全局报警3	步断开模式	从机断开模式	禁止	调制解调器	无LCD	延迟时间	分	秘
A01							禁止	全局				15		
A02							禁止	全局		•		120		
A03							逐级	全局		•		5		
A04							禁止	全局		•		120		•
A05							禁止	全局		•		5		
A06							禁止	全局		•		15		
A07							逐级	就地		•		30		
A08							逐级	就地		•		30		
A09							快速	全局		•		0		
A10							禁止	全局				0		
A11							逐级	就地		•		3		
A12							逐级	就地				3		
A13							逐级	就地				3		
A14			•				逐级	就地				3		
A15	•		•				逐级	就地				3		
A16	•		•				逐级	就地				3		
A17							逐级	就地				10		
A18							逐级	就地		•		10		
A19							逐级	全局				0		
UA1							禁止	全局				0		
UA2							禁止	全局				0		
UA3							禁止	全局				0		
UA4							禁止	全局				0		
UA5							禁止	全局				0		
UA6							禁止	全局				0		
UA7							禁止	全局				0		
UA8							禁止	全局				0		
A20							禁止	全局				0		
A21							禁止	全局				0		
A22							禁止	全局				0		

命令菜单

- 命令菜单允许执行一些不经常的操作,如测量值复位、计数器清零、报警复位等
- 如果以高级用户权限进入,则命令菜单允许执行对设备配置有用的自动操作
- 下表列出了菜单可用功能,按用户权限划分

代码	命令	访问权限	说明
C01	复位分计电能表	用户级	清空分计电能表
C02	复位计数器CNTx	用户级	清空计数器CNTx
C03	复位LIMx状态	用户级	复位锁存LIMx变量状态
C04	复位最高温度	高级	清空最高温度峰值
C05	复位最大过载	高级	清空最高过载峰值
C06	复位步操作小时计数	高级	清空步操作时钟计数
C07	复位步投切计数器	高级	清空步投切计数器
C08	重置步功率	高级	重置不微调时原始可编程功率值
C09	复位所有电能表	高级	清空所有电能表
C10	测试模式激活	高级	激活输出的测试模式
C11	事件日志清空	高级	清空事件日志存储器
C12	重置出厂设置	高级	重置为出厂设置
C13	备份设置	高级	备份用户参数设置
C14	设置重置	高级	用用户设置备份重置参数
C15	清空周总功率因数	用户级	清空每周总功率因数记录
C16	复位维护间隔1时钟计数	高级	复位维护间隔1时钟计数
C17	复位维护间隔2时钟计数	高级	复位维护间隔2时钟计数
C18	复位维护间隔3时钟计数	高级	复位维护间隔3时钟计数

- 选定命令后,按√执行操作
- 设备将提示确认,再次按√,命令被执行
- 取消命令执行,按◀
- 退出命令菜单,按◀

限值和模拟量输出的测量表

- 下表列出了所有与限值(菜单 M20)和模拟量输出(菜单 M23)相关的测量
- 参数 P20. n. 01 和 P23. n. 02 的选定代码对应于下列测量值
- 为方便与三相测量比较,提供了一些"虚拟"值,他们是三相最大测量值 这些值在测量值代码中用 MAX(最大)来标记

示例:如果通过三相电流对系统5次谐波应用最大限值10%,设置LIM1为H.IMAX,通道号为5.设备检测的是三相电流IL1、IL2和IL3中5次谐波的最大成分

设置:

P20.1.01 = H.I MAX (三相中最大电流谐波)
P20.1.02 = 5 (5次谐波)
P20.1.03 = max(最大)(与最大限值比较)
P20.1.04 = 10 (限值 = 10%)
...

序号	测量代码	说明
00	OFF	禁用测量值
01	VL1-N	相电压 L1-N
02	V L2-N	相电压 L2-N
03	V L3-N	相电压 L3-N
04	យ	相电流口
05	112	相电流 12
06	113	相电流L3
07	VL1-L2	线电压 [1-12
08	V L2-L3	线电压12-13
09	VI3-L1	线电压13-11
10	W L1	有功功率 🛯
11	W L2	有功功率12
12	W L3	有功功率13
13	var L1	无功功率山
14	var L2	无功功率12
15	var L3	无功功率13
16	VAL1	视在功率11
17	VAL2	视在功率 12
18	VA L3	视在功率13
19	Hz	频率
20	cosp L1	cosφ L1
21	sinq L1	sinφ L1
22	cosφ L2	cosφ L2
23	sinq I.2	sinφ L2
24	cosp L3	cosφ L3
25	sinq L3	sinφ L3
26	W TOT	总有功功率
27	var TOT	总无功功率
28	VATOT	总视在功率
29	cosφ ΤΟΓ	coso(三相平衡系统)
30	sinφ TOT	sinφ(三相半衡系统)
31	THD VLN MAX	总诸波失真相电压(三相中最大值)
32	THD I MAX	おば彼矢具相电流(二相甲最大值)
33	THD VILL MAX	
34	H. VLN MAX	相电压n次谐波成分(三相甲载天值)
35	H. I MAX	相电流n次谐波成分(二相甲最大值) 从中国、次选进式入了二百五月十年)
36	H.VIL MAX	
37		
38	SIDO MAX	
39		
40		巴加 、二 们 甲取 入 但 ノ 2 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4
41		
42		(1191) (二111) (11
45		3276/22(二伯丁取/19月) 2019年(二伯山县小佐)
44		W9ψ (二/11円取/)国/ 副島本白墳別昌絵)
45		793里亦曰沃395里欄八 可伦积计新奥
40	UNI	└,」 「「」」 「」」 「」」 「」」 「」」 「」」 「」」

接线图

标准三相连接安装

单相连接安装

三相不带中性线连接安装

三相带中性线连接安装

中压侧测量,低压侧校正连接安装

完全中压接线连接安装

扩展模块上的步连接安装

静态校正连接安装

主从机配置

端子布局

安装

- PFC8 设计用于面板安装。正确的安装,可以保证前面板的防护等级 IP54。
- 将控制器插入控制屏安装孔,确保垫圈位于控制屏面板表面和控制器前框架之间。
- 确保自定义标签尾部没有折叠在垫圈下面破坏密封。自定义标签尾部应位于控制屏内部。
- 在控制屏内部,将四个固定夹(塑料袋中随控制器标配)中的一个固定在控制器壳体四 周的合适的方孔上,然后向后移动以插入到位。
- 对四个固定夹重复同样的动作

- 紧固固定螺丝的最大力矩为 0.5Nm
- 如果设备需要拆除,松掉四个固定夹螺丝,然后以相反顺序重复上面的步骤
- 对于电气连接,参见相应章节的接线图和技术特性表中的给定需求

机械尺寸和控制屏开孔尺寸[mm]

技术特性

供电	
<u> 統治力力 ITU 1</u>	100-415V~
御正电压US	110-250V
場於中国業用	90–456V \sim
採作电压氾固	93. 5–300V
频率	45-66Hz
功耗/损耗	10.5W/27VA(带4个EXP模块测量)
功耗/损耗(按UL)	5.5W/27VA(不带EXP模块测量)
掉电保持时间	110VAC ≥35ms;220-415VAC ≥80ms
电压输入	
最高额定电压Ue	600V \sim L-L (346V \sim L-N)
测量范围	50-720V \sim L-L (415V \sim L-N)
频率范围	45-65Hz/360-440Hz
测量方法	真有效值
测量输入阻抗	>0.55MΩ L−N; >1.10MΩ L−L
接线方式	单相、两相、三相带或不带中性点以及平衡三相系统
电流输入	
最大额定电流Ie	1A~或5A~
到自作田	1A: 0.025 - 1.2A~
测重犯 围	5A: 0.025 - 6A \sim
输入类型	外部CT(低压)提供,最大5A
测量方法	真有效值
过载能力	+20% Ie
过载峰值	50A, 1秒
功耗	<0. 6VA
测量精度	
线电压	±0.5% 满量程 ±1位
继电器输出 OUT1-7	
数量和触点类型	7个;每个带1个N0;1个公共端
最高额定电压	415V~
额定电流	5A 250V~ AC1/1.5A 415V~ AC15
UL等级	B300; 5A 250V~
触点公共端最大电流	10A
继电器输出 OUT8	
数量和触点类型	1个,可转换
最高额定电压	415V~
额定电流	5A 250V~ AC1/1. 5A 415V~ AC15
UL等级	B300; 5A 250V~
日历-时钟(实时时钟RTC)	
储能	后备电容器
无供电电源情况下工作时间	约12…15天
绝缘	
额定绝缘电压Ui	600V~
额定冲击耐压 (Uimp)	9. 5kV
工频耐压	5. 2kV

技术特性(续)

<u> </u>				
操作温度	−20····+70 °C			
贮存温度	−30····+80 °C			
相对湿度	<80%(IEC/EN 60068-2-78)			
最大污染度	2			
过电压类别	3			
测量类别	III			
气候顺序	Z/ABDM(IEC/EN 60068-2-61)			
耐冲击性	15g(IEC/EN 60068-2-27)			
抗振性	0.7g(IEC/EN 60068-2-6)			
连接	1			
端子类型	插入/移除式			
导体截面积(最小…最大)	0. 22. 5mm ² (2412AWG)			
根据UL,导体截面积(最小···最大)	0. 75…2. 5mm ² (28…12AWG)			
紧固力矩	0.56Nm(51bin/根据UL, 4.51bin)			
外壳				
类型	面板安装			
材料	聚碳酸酯			
防护等级	前面板IP54; 端子IP20			
重量	980g			
认证和遵守				
获得认证	cULus			
	仅使用60℃/75℃铜导体(CU)			
III	AWG范围: 18 - 12AWG 绞线或实心线			
OLW M	现场接线端子紧固扭矩: 4.51bin			
	平面面板安装在1型机箱上			
] [IEC/EN 61010-1, IEC/EN 61000-6-2			
位 ' 」 1/01 世	IEC/EN 61000-6-3, UL508, CSA C22.2 nº14			

¹辅助电源所连接线路的相电压 ≤ 300V。